PlayKit.ai

Text Generation

Use ChatClient for AI text generation and conversations

Text Generation

ChatClient is the core class for AI text generation in the PlayKit SDK. It provides flexible methods for text completion, streaming responses, tool calling, and structured output generation.

Create ChatClient

import { PlayKitSDK } from 'playkit-sdk';

const sdk = new PlayKitSDK({
  gameId: 'your-game-id',
  developerToken: 'your-token'
});

await sdk.initialize();

// Use default model (gpt-4o-mini)
const chat = sdk.createChatClient();

// Specify model
const chat = sdk.createChatClient('gpt-4o');

Simple Chat

The simplest way to interact with AI.

Basic Q&A

const response = await chat.chat('What is quantum computing?');
console.log(response);

With System Prompt

const response = await chat.chat(
  'How should I handle this challenge?',
  'You are a wise game guide who speaks in riddles.'
);

System Prompt Uses:

  • Define AI's role and personality
  • Set response style and format
  • Provide background information and rules

Streaming Responses

Display AI-generated text in real-time instead of waiting for the complete response.

Basic Streaming

await chat.chatStream(
  'Tell me a long story about a brave knight',
  // onChunk: called for each text fragment
  (chunk) => {
    process.stdout.write(chunk);
  },
  // onComplete: called when finished (optional)
  (fullText) => {
    console.log('\nDone! Total length:', fullText.length);
  }
);

Streaming in Web Pages

<div id="ai-response"></div>

<script>
const responseDiv = document.getElementById('ai-response');

await chat.chatStream(
  'Tell me about the universe',
  (chunk) => {
    responseDiv.textContent += chunk;
    responseDiv.scrollTop = responseDiv.scrollHeight;
  }
);
</script>

Streaming with System Prompt

await chat.chatStream(
  'Explain gravity',
  (chunk) => display(chunk),
  (fullText) => console.log('Complete'),
  'You are a physics teacher. Keep explanations simple.'
);

Full Configuration Text Generation

For scenarios requiring more control, use the textGeneration method.

Basic Usage

const result = await chat.textGeneration({
  messages: [
    { role: 'system', content: 'You are a helpful assistant' },
    { role: 'user', content: 'What is the capital of France?' }
  ]
});

console.log('Response:', result.content);
console.log('Model:', result.model);
console.log('Finish reason:', result.finishReason);

Response Object

interface ChatResult {
  content: string;           // Generated text
  model: string;             // Model used
  finishReason: string;      // 'stop' | 'length' | 'content_filter' | 'tool_calls'
  usage?: {
    promptTokens: number;
    completionTokens: number;
    totalTokens: number;
  };
  id?: string;               // Completion ID
  created?: number;          // Timestamp
  tool_calls?: ToolCall[];   // If tools were called
}

Multi-turn Conversation

Manually manage conversation history:

const messages = [
  { role: 'system', content: 'You are a game master' }
];

// Round 1
messages.push({ role: 'user', content: 'What is my quest?' });
const result1 = await chat.textGeneration({ messages });
messages.push({ role: 'assistant', content: result1.content });

// Round 2
messages.push({ role: 'user', content: 'How do I start?' });
const result2 = await chat.textGeneration({ messages });
messages.push({ role: 'assistant', content: result2.content });

// Round 3
messages.push({ role: 'user', content: 'What weapons do I need?' });
const result3 = await chat.textGeneration({ messages });

For NPC dialogue with automatic history management, use NPCClient instead. See NPC Conversations.

Streaming with Full Configuration

await chat.textGenerationStream({
  messages: [
    { role: 'system', content: 'You are helpful' },
    { role: 'user', content: 'Explain AI' }
  ],
  temperature: 0.7,
  maxTokens: 500,

  onChunk: (chunk) => {
    process.stdout.write(chunk);
  },

  onComplete: (fullText) => {
    console.log('\nDone! Length:', fullText.length);
  },

  onError: (error) => {
    console.error('Error:', error);
  }
});

Configuration Options

Temperature

Controls output randomness and creativity (0.0 - 2.0):

// Low temperature - more deterministic, conservative
const formal = await chat.textGeneration({
  messages: [{ role: 'user', content: 'Explain gravity' }],
  temperature: 0.2
});

// High temperature - more random, creative
const creative = await chat.textGeneration({
  messages: [{ role: 'user', content: 'Write a sci-fi story' }],
  temperature: 1.2
});
TemperatureUse Case
0.0 - 0.3Factual Q&A, code generation
0.4 - 0.7General conversation, game NPCs
0.8 - 1.2Creative writing, brainstorming
1.3 - 2.0Highly creative, experimental

Max Tokens

Limit maximum generation length:

const result = await chat.textGeneration({
  messages: [{ role: 'user', content: 'Summarize quantum physics' }],
  maxTokens: 100  // Approximately 75 English words
});

1 token ≈ 0.75 English words ≈ 0.5 Chinese characters. Setting too small may truncate responses.

Seed

Use the same seed for reproducible results:

const result1 = await chat.textGeneration({
  messages: [{ role: 'user', content: 'Generate a random name' }],
  seed: 42,
  temperature: 0.7
});

const result2 = await chat.textGeneration({
  messages: [{ role: 'user', content: 'Generate a random name' }],
  seed: 42,
  temperature: 0.7
});

// result1.content === result2.content (in most cases)

Uses:

  • Debugging and testing
  • Reproducible game content
  • A/B testing

Stop Sequences

Specify sequences that stop generation:

const result = await chat.textGeneration({
  messages: [{ role: 'user', content: 'Count to 10' }],
  stop: ['5', '6']  // Stop when encountering 5 or 6
});

Top-P Sampling

Controls output diversity (0.0 - 1.0):

const result = await chat.textGeneration({
  messages: [{ role: 'user', content: 'Write a poem' }],
  topP: 0.9  // Only consider top 90% probability words
});

Complete Configuration Example

const result = await chat.textGeneration({
  messages: [
    { role: 'system', content: 'You are a medieval bard' },
    { role: 'user', content: 'Tell me a tale' }
  ],
  model: 'gpt-4o',
  temperature: 0.8,
  maxTokens: 500,
  seed: 123,
  stop: ['\n\n', '---'],
  topP: 0.95
});

console.log('Content:', result.content);
console.log('Model:', result.model);
console.log('Finish reason:', result.finishReason);

if (result.usage) {
  console.log('Prompt tokens:', result.usage.promptTokens);
  console.log('Completion tokens:', result.usage.completionTokens);
  console.log('Total tokens:', result.usage.totalTokens);
}

Tool Calling

Let the AI call functions to interact with your game.

Define Tools

const tools = [
  {
    type: 'function',
    function: {
      name: 'getWeather',
      description: 'Get the current weather for a location',
      parameters: {
        type: 'object',
        properties: {
          location: { type: 'string', description: 'City name' }
        },
        required: ['location']
      }
    }
  },
  {
    type: 'function',
    function: {
      name: 'giveItem',
      description: 'Give an item to the player',
      parameters: {
        type: 'object',
        properties: {
          itemName: { type: 'string' },
          quantity: { type: 'number' }
        },
        required: ['itemName', 'quantity']
      }
    }
  }
];

Call with Tools

const result = await chat.textGenerationWithTools({
  messages: [
    { role: 'user', content: 'Give me 5 health potions' }
  ],
  tools
});

if (result.tool_calls && result.tool_calls.length > 0) {
  for (const toolCall of result.tool_calls) {
    console.log('Tool:', toolCall.function.name);
    const args = JSON.parse(toolCall.function.arguments);
    console.log('Args:', args);

    // Execute in your game
    if (toolCall.function.name === 'giveItem') {
      givePlayerItem(args.itemName, args.quantity);
    }
  }
}

Tool Choice Options

// Auto: model decides whether to use tools (default)
const result1 = await chat.textGenerationWithTools({
  messages,
  tools,
  tool_choice: 'auto'
});

// Required: model must use a tool
const result2 = await chat.textGenerationWithTools({
  messages,
  tools,
  tool_choice: 'required'
});

// None: model cannot use tools
const result3 = await chat.textGenerationWithTools({
  messages,
  tools,
  tool_choice: 'none'
});

// Specific: force a specific tool
const result4 = await chat.textGenerationWithTools({
  messages,
  tools,
  tool_choice: {
    type: 'function',
    function: { name: 'giveItem' }
  }
});

Streaming with Tools

await chat.textGenerationWithToolsStream({
  messages: [{ role: 'user', content: 'Check the weather in Tokyo' }],
  tools,

  onChunk: (chunk) => {
    process.stdout.write(chunk);
  },

  onComplete: (result) => {
    if (result.tool_calls) {
      console.log('\nTool calls:', result.tool_calls);
    }
  },

  onError: (error) => {
    console.error('Error:', error);
  }
});

Multi-turn Tool Usage

const messages = [
  { role: 'user', content: 'What is the weather in Paris?' }
];

// First call - AI requests tool
const result1 = await chat.textGenerationWithTools({ messages, tools });

if (result1.tool_calls) {
  // Add assistant message with tool calls
  messages.push({
    role: 'assistant',
    content: result1.content,
    tool_calls: result1.tool_calls
  });

  // Execute tool and add result
  for (const call of result1.tool_calls) {
    const weatherData = await getWeather(JSON.parse(call.function.arguments));
    messages.push({
      role: 'tool',
      tool_call_id: call.id,
      content: JSON.stringify(weatherData)
    });
  }

  // Second call - AI uses tool result
  const result2 = await chat.textGeneration({ messages });
  console.log('Final answer:', result2.content);
}

Multimodal Messages

Send images and audio along with text.

Image Input

import { createMultimodalMessage } from 'playkit-sdk';

// From URL
const message = createMultimodalMessage(
  'user',
  'What is in this image?',
  [{ url: 'https://example.com/image.jpg', detail: 'high' }]
);

const result = await chat.textGeneration({
  messages: [message]
});

// From base64
const base64Image = '...';
const message2 = createMultimodalMessage(
  'user',
  'Describe this scene',
  [{ url: base64Image, detail: 'auto' }]
);

Image Detail Levels

DetailDescription
autoAutomatically choose based on image size
lowLower resolution, faster processing
highHigher resolution, more detailed analysis

Audio Input

const message = createMultimodalMessage(
  'user',
  'Transcribe this audio',
  [],  // No images
  [{ data: base64AudioData, format: 'wav' }]
);

const result = await chat.textGeneration({
  messages: [message]
});

Supported Audio Formats

  • wav
  • mp3
  • webm
  • flac
  • ogg

Combined Multimodal

const message = createMultimodalMessage(
  'user',
  'What is happening in this image and audio?',
  [{ url: 'https://example.com/photo.jpg' }],
  [{ data: audioBase64, format: 'mp3' }]
);

Structured Output

Generate type-safe JSON data using schemas.

Using Schema Library

// Add schema to library
const schemaLibrary = sdk.getSchemaLibrary();
schemaLibrary.addSchema({
  name: 'enemy',
  description: 'Enemy character stats',
  schema: {
    type: 'object',
    properties: {
      name: { type: 'string' },
      health: { type: 'number' },
      damage: { type: 'number' },
      attacks: { type: 'array', items: { type: 'string' } }
    },
    required: ['name', 'health', 'damage', 'attacks']
  }
});

// Generate using schema name
const enemy = await chat.generateStructuredByName(
  'enemy',
  'Create a fire dragon boss'
);

console.log(enemy);
// { name: "Inferno Drake", health: 5000, damage: 150, attacks: [...] }

Using Inline Schema

const item = await chat.generateStructuredWithSchema(
  {
    type: 'object',
    properties: {
      name: { type: 'string' },
      damage: { type: 'number' },
      rarity: { type: 'string', enum: ['common', 'rare', 'epic', 'legendary'] }
    },
    required: ['name', 'damage', 'rarity']
  },
  'Create a legendary sword',
  { schemaName: 'weapon', model: 'gpt-4o-mini' }
);

TypeScript Integration

interface Enemy {
  name: string;
  health: number;
  damage: number;
  attacks: string[];
}

const enemy = await chat.generateStructuredByName<Enemy>(
  'enemy',
  'Create a frost giant'
);

// Full type safety
console.log(enemy.name);   // string
console.log(enemy.health); // number

For more advanced structured output features, see Structured Output.

Supported Models

ModelDescriptionUse Case
gpt-4oGPT-4 OmniBest performance, complex tasks
gpt-4o-miniGPT-4 Omni MiniRecommended, best value
gpt-4GPT-4High quality output
gpt-3.5-turboGPT-3.5 TurboFast response

Choosing a Model

// High quality, complex reasoning
const gpt4 = sdk.createChatClient('gpt-4o');

// Balance performance and cost (recommended)
const mini = sdk.createChatClient('gpt-4o-mini');

// Fast, simple tasks
const turbo = sdk.createChatClient('gpt-3.5-turbo');

Error Handling

import { PlayKitError } from 'playkit-sdk';

try {
  const result = await chat.textGeneration({ messages });
} catch (error) {
  if (error instanceof PlayKitError) {
    console.error(`[${error.code}] ${error.message}`);

    switch (error.code) {
      case 'NOT_AUTHENTICATED':
        console.log('Need to login');
        break;
      case 'INSUFFICIENT_CREDITS':
        console.log('Not enough credits');
        break;
      case 'CHAT_ERROR':
        console.log('Chat failed:', error.message);
        break;
      case 'CHAT_STREAM_ERROR':
        console.log('Streaming failed:', error.message);
        break;
      case 'PARSE_ERROR':
        console.log('Failed to parse response');
        break;
      default:
        console.log('Unknown error');
    }
  }
}

Best Practices

1. Choose the Right Model

// Good: use cheaper model for simple tasks
const chat = sdk.createChatClient('gpt-4o-mini');

// Use expensive model only when needed
const complexChat = sdk.createChatClient('gpt-4o');

2. Use System Prompts Effectively

// Good: clear role and rules
const response = await chat.chat(
  'What should I do?',
  'You are a wise wizard. Keep responses under 50 words. Be mysterious.'
);

// Bad: no context
const response = await chat.chat('What should I do?');

3. Control Output Length

// Good: limit tokens for predictable costs
const result = await chat.textGeneration({
  messages: [{ role: 'user', content: 'Summarize' }],
  maxTokens: 100
});

// Bad: unlimited response
const result = await chat.textGeneration({
  messages: [{ role: 'user', content: 'Explain everything' }]
});

4. Use Streaming for Better UX

// Good: immediate feedback
await chat.chatStream('Long story', (chunk) => display(chunk));

// Bad: user waits for complete response
const response = await chat.chat('Long story');
display(response);

5. Manage Conversation History

// Good: limit history length
const messages = conversationHistory.slice(-10);

// Bad: unlimited history growth
const messages = fullConversationHistory; // Could be thousands

6. Reuse Client Instances

// Good: reuse client
const chat = sdk.createChatClient();
await chat.chat('Q1');
await chat.chat('Q2');

// Bad: repeated creation
await sdk.createChatClient().chat('Q1');
await sdk.createChatClient().chat('Q2');

Configuration Reference

ChatConfig

OptionTypeDefaultDescription
messagesMessage[]requiredConversation messages
modelstring'gpt-4o-mini'AI model to use
temperaturenumber0.7Randomness (0.0-2.0)
maxTokensnumber-Maximum tokens to generate
seednumber-Random seed for reproducibility
stopstring[]-Stop sequences
topPnumber-Top-P sampling (0.0-1.0)

Message Roles

RoleDescription
systemInstructions for AI behavior
userUser input messages
assistantAI responses
toolTool execution results

Next Steps